skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Puel, M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We investigate the fractional diffusion approximation of a kinetic equation set in a bounded interval with diffusive reflection conditions at the boundary. In an appropriate singular limit corresponding to small Knudsen number and long time asymptotic, we show that the asymptotic density function is the unique solution of a fractional diffusion equation with Neumann boundary condition. This analysis completes a previous work by the same authors in which a limiting fractional diffusion equation was identified on the half-space, but the uniqueness of the solution (which is necessary to prove the convergence of the whole sequence) could not be established. 
    more » « less